INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation MAI

EXERCISES [MAI 1.12-1.13] MATRICES

Compiled by Christos Nikolaidis

A. Paper 1 questions (SHORT)

MATRIX OPERATIONS

1. [Maximum mark: 12]

For each of the following operations state whether it is possible or not. If so, find the result.

$\begin{pmatrix} 3 & 3-x \\ 2-y & 1 \end{pmatrix} + \begin{pmatrix} 2 & x \\ 1+y & 0 \end{pmatrix}$	
$-2\begin{pmatrix} 0 & 1 \\ -4 & 2 \\ 4 & 5 \end{pmatrix} + 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	
$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \end{pmatrix}$	
$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$	
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	
$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	

2.	[Maximum	mark:	81
	IIVIAMIIIIAIII	minari.	•

(a) For each of the following operations state whether it is possible or not. If so, find the result.

$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	
$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} $	
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} $	

(b) Let A be a 2×3 matrix. Given that I₂ and I₃ are the identity 2×2 and 3×3 matrices respectively, write down three properties that describe the results in question (a).
 [3]

3. [Maximum mark: 6]

(a) Let
$$\begin{pmatrix} b & 3 \\ 7 & 8 \end{pmatrix} + \begin{pmatrix} 9 & 5 \\ -2 & 7 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ a & 15 \end{pmatrix}$$
.

(i) Write down the value of a. (ii) Find the value of b. [4]

(b) Let
$$3 \begin{pmatrix} -4 & 8 \\ 2 & 1 \end{pmatrix} - 5 \begin{pmatrix} 2 & 0 \\ q & -4 \end{pmatrix} = \begin{pmatrix} -22 & 24 \\ 9 & 23 \end{pmatrix}$$
. Find the value of q . [2]

4.	[Maximum mark:	5]
----	----------------	----

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix}$.

			_
(i)	\boldsymbol{A}	+	В

Find (i)
$$A + B$$
; (ii) $-3A$;

(iii)
$$AB$$
.

5. [Maximum mark: 5]

Let $\mathbf{A} = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ d & e \end{pmatrix}$. Giving your answers in terms of a, b, c, d and e,

(a) write down
$$A + B$$
;

[2]

[3]

	en that $\begin{pmatrix} 2x & -y \\ 3z & w \end{pmatrix} = \begin{pmatrix} x & -4 \\ -1 & 2w \end{pmatrix} + \begin{pmatrix} 4 & x+y \\ z+w & 3 \end{pmatrix}$, find the values of x, y, z, w .
	$\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 4 & 7 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} 7 \end{pmatrix}$
	$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 5 & -4 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, B_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, B_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, B_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$ Find AB .
	$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 5 & -4 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, \ B_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ B_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \ B_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$ Find AB . Find AB_1 , AB_2 , AB_3 . What do you observe?
a)	Find AB .
a)	Find AB .
a)	Find AB .
a)	Find AB . Find AB_1 , AB_2 , AB_3 . What do you observe?
a)	Find AB . Find AB_1 , AB_2 , AB_3 . What do you observe?
a)	Find AB . Find AB_1 , AB_2 , AB_3 . What do you observe?
a)	Find AB . Find AB_1 , AB_2 , AB_3 . What do you observe?

8.	[Maximum	mark:	5
U .	India	minari.	•

Let $A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 1 & 4 \\ 4 & 7 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} x & -2 & 3 \\ 1 & 1 & 1 \\ 4 & x & 2 \end{pmatrix}$. Show that $AB \neq BA$ holds for any $x \in R$.

9. [Maximum mark: 7]

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Find all matrices B such that AB = BA in the following cases:

(i) if
$$B = \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$$

(ii) if
$$B = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$$

10. [Maximum mark: 10]

Let
$$A = \begin{pmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$

- (a) Find A^2 ; What do you observe? **Hence** deduce a formula for A^n , $n \in \mathbb{Z}^+$. [3]
- (b) Find B^2 ; What do you observe? **Hence** deduce a formula for B^n , $n \in \mathbb{Z}^+$. [4]
- (c) Find C^3 ; What do you observe? **Hence** deduce a formula for C^n , $n \ge 3$. [3]

.....

1	1.	[Maximum	mark.	61
	I I .	liviaxilliulli	IIIain.	ΟI

Let
$$\mathbf{A} = \begin{pmatrix} 1 & x & -1 \\ 3 & 1 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 \\ x \\ 2 \end{pmatrix}$.

(a) Find AB. [3]

[3]

٠,	1 110 712.
(b)	The matrix $C = \begin{pmatrix} 20 \\ 28 \end{pmatrix}$ and $2AB = C$. Find the value of x .

12. [Maximum mark: 5]

If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ k & -1 \end{pmatrix}$$
 and \mathbf{A}^2 is a matrix whose entries are all 0 , find k .

[MAI 1.12-1.13] MATRICES

13.	[Maximum mark: 6]	
	If $\mathbf{A} = \begin{pmatrix} x & 4 \\ 4 & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & y \\ 8 & 4 \end{pmatrix}$, find two values of x and y , given that $\mathbf{AB} = \mathbf{BA}$.	
14.	[Maximum mark: 5] Let $W = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ and $Q = \begin{pmatrix} 26 \\ 12 \\ 10 \end{pmatrix}$	
	(i) Find WP . (ii) Given that $2WP + S = Q$, find S .	

DETERMINANT AND INVERSE MATRIX

15. [Maximum mark: 14]

For each of the following matrices, use the appropriate formulas to find its determinant and its inverse (it there exists).

Matrix	Determinant	Inverse
$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$		
$C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$		
$D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$		
$E = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$		
$F = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$		

16. [Maximum mark: 6]

For each of the following matrices, use the appropriate formulas to find its determinant and its inverse (it there exists).

Matrix	Determinant	Inverse
$A = \begin{pmatrix} 2 & 5 \\ -2 & 7 \end{pmatrix}$		
$B = \begin{pmatrix} 1 & 5 \\ 2 & 10 \end{pmatrix}$		
$C = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$		

[MAI 1.12-1.13] MATRICES

IVIA	Allium mark. 4]
fA	$= \begin{pmatrix} 2p & 3 \\ -4p & p \end{pmatrix}$ and det $A = 14$, find the possible values of p .
n	eximum mark: 4] d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	-
ind	d the values of the real number k for which the determinant of the matrix
ind	d the values of the real number k for which the determinant of the matrix
ine	d the values of the real number k for which the determinant of the matrix
ind	d the values of the real number k for which the determinant of the matrix
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.
ind	d the values of the real number k for which the determinant of the matrix $\begin{pmatrix} -4 & 3 \\ 2 & k+1 \end{pmatrix}$ is equal to zero.

19.	[Max	imum mark: 5]					
	(a)	Given that $a \neq 0$, $b \neq 0$, show that $A = \begin{pmatrix} a \\ 0 \end{pmatrix}$!	$\binom{0}{b}$	and $B = \begin{pmatrix} a^{-1} \\ 0 \end{pmatrix}$	0 b^{-1}	are inverse

are inverse [3]

(h)	Hence , write down the inverse of $M=\left \right $	3	0	[2]
(0)	Theree, write down the inverse of $M =$	0	1/5).	[2]

20. [Maximum mark: 7]

to each other.

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 6 & -2 & -3 \\ -1 & 1 & x \\ -1 & x & 1 \end{pmatrix}$.

(a) Write down the value of
$$\det A$$
. [1]

(b) Find the value of
$$x$$
, given that $AB = I = BA$. [3]

(c) Write down
$$A^{-1}$$
 and B^{-1} . [2]

.....

21.	[Maximum	mark.	5
4 1.	IIVIAXIIIIUIII	mark.	O

Let $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ k & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. Find, in terms of k,

(a)	2 <i>A</i> − B ;	[3]
` '	,	L-3

(b)
$$\det(2A - B)$$
. [2]

 	•••••	

22. [Maximum mark: 6]

Let
$$C = \begin{pmatrix} -2 & 4 \\ 1 & 7 \end{pmatrix}$$
 and $D = \begin{pmatrix} 5 & 2 \\ -1 & a \end{pmatrix}$.

(b) Find
$$\boldsymbol{D}^{-1}$$
. [2]

(c) Find
$$\mathbf{D}^2$$
. [2]

.....

23.	[Maximum	mark.	ผา
4 3.	IIVIAXIIIIUIII	IIIair.	υı

Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & p \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -2 & 1 \\ q & \frac{1}{2} \end{pmatrix}$.

(a	Find AB in terms of p and q .	. [3	1
٧~	ij i ina 112 in terme er p ana q.	[ĕ	J

(b)	Matrix \boldsymbol{B} is the inverse of matrix \boldsymbol{A} . Find the value of p and of q .	[3]

24. [Maximum mark: 6]

Let
$$A = \begin{pmatrix} 3 & x \\ -2 & -3 \end{pmatrix}$$
.

((a)	Find the value of	of x for which A^-	does not exist.	[3]

[3]

(b) Given that
$$A = A^{-1}$$
, find x .

_	$X + X^2$.
	ximum mark: 5]
	$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$
Let .	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 2 \\ 9 & 5 & 8 \\ 7 & 4 & 6 \end{pmatrix}.$
(a)	Write down the determinant of A .
(b)	Write down the inverse of <i>A</i> .
(c)	By investigating the determinant of A^n , for several values of n , write down a
	formula for $\det A^n$ in terms of n .

B. Paper 2 questions (LONG)

27. [Maximum mark: 10]

The following properties are wrong. Write down the correct answer.

	Wrong answer	Correct answer
AX + BX =	<i>X</i> (<i>A</i> + <i>B</i>)	
XA + XB =	(A+ B)X	
AB + A =	A (B +1)	
AB + 2A =	(B +2 I)A	
BA + kA =	(B +k)A	
$A^2 + A =$	A(A+1)	
(B+C)A =	AB + AC	
(A+C)A =	$A^2 + AC$	
$(A+B)^2 =$	$A^2 + 2AB + B^2$	
$(A+I)^2 =$	$A^2 + 2A + 1$	

28.	[Maximum	mark.	151
2 0.	IIVIANIIIIUIII	man.	וטי

[Maximum mark Let
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Lei	$A = \begin{pmatrix} 0 & 1 \end{pmatrix}$				
(a)	Find the matrices A^2 , A^3 , A^4 .	[3]			
(b)	Guess a formula for the matrix A^n , for any $n \in \mathbb{Z}^+$.	[2]			
(c)	Find A^{10} by using your GDC. Confirm that your guess is true for $n = 10$.	[2]			
(d)	Write down the result of your guess for $n=0$. What do you notice?	[2]			
In fa	ct, the formula of your guess in (b) can be extended for any $n \in \mathbb{Z}$ (that is for				
nega	ative powers as well)				
(e)	Find the inverse matrix A^{-1} . Does the result agree with your guess?	[2]			
(f)	Write down the matrix A^{-n} , according to your guess.				
	Show that A^{-n} is the inverse of A^n by multiplying the two matrices.	[4]			

[MAI 1.12-1.13] MATRICES

29.

[Maximum mark: 14]				
S_n be the sum of the first n terms of the arithmetic series $2+4+6+\ldots$				
(a) Find (i) S_4 ; (ii) S_{100} .	[4]			
Let $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.				
(b) Find M^2 and M^3 .	[3]			
It may now be assumed that $M^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$, for $n \ge 4$.				
sum T_n is defined by $T_n = M^1 + M^2 + M^3 + + M^n$.				
(c) (i) Write down M^4 . (ii) Find T_4 .	[4]			
(d) Using your results from part (a) (ii), find $ extbf{\emph{T}}_{100}$.	[3]			