matrix transformation hl pl [34

 marks]The transformation T is represented by the matrix $M=\left(\begin{array}{cc}2 & -4 \\ 3 & 1\end{array}\right)$.
A pentagon with an area of $12 \mathrm{~cm}^{2}$ is transformed by T.
1a. Find the area of the image of the pentagon.
[2 marks]

Markscheme

attempt to find $\operatorname{det}(M)$
(M1)
$=14$
$(12 \times 14)=168 \mathrm{~cm}^{2}$ A1
[2 marks]

Under the transformation T, the image of point X has coordinates $(2 t-3,6-5 t)$, where $t \in \mathbb{R}$.

1b. Find, in terms of t, the coordinates of X .

Markscheme

let X have coordinates (x, y)

METHOD 1

$$
\begin{align*}
& M\binom{x}{y}=\binom{2 t-3}{6-5 t} \\
& \binom{x}{y}=M^{-1}\binom{2 t-3}{6-5 t} \tag{A1}\\
& M^{-1}=\frac{1}{14}\left(\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right) \\
& \binom{x}{y}=\frac{1}{14}\binom{2 t-3+24-20 t}{-6 t+9+12-10 t} \\
& \binom{x}{y}=\frac{1}{14}\binom{21-18 t}{21-16 t} \text { OR }\left(\frac{21-18 t}{14}, \frac{21-16 t}{14}\right)
\end{align*}
$$

METHOD 2

writing two simultaneous equations
(M1)
$2 x-4 y=2 t-3$
(A1)
$3 x+y=6-5 t$ (A1)
attempting to solve the equations
(M1)
$(x, y)=\left(\frac{3}{2}-\frac{9 t}{7}, \frac{3}{2}-\frac{8 t}{7}\right)$
A1A1
[6 marks]

The equation of the line $y=m x+c$ can be expressed in vector form $r=a+\lambda b$.

2a. Find the vectors a and b in terms of m and/or c.

Markscheme

(one vector to the line is $\binom{0}{c}$ therefore) $a=\binom{0}{c} \quad$ A1
the line goes m up for every 1 across
(so the direction vector is) $b=\binom{1}{m}$
A1

Note: Although these are the most likely answers, many others are possible.

[2 marks]

The matrix M is defined by $\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)$.
$2 b$. Find the value of $\operatorname{det} M$.
[1 mark]
Markscheme
(from GDC OR $6 \times 2-4 \times 3$) $|M|=0$
A1
[1 mark]

The line $y=m x+c$ (where $m \neq-2$) is transformed into a new line using the transformation described by matrix M.

2c. Show that the equation of the resulting line does not depend on m or c. [4 marks]

Markscheme

METHOD 1

$$
\binom{X}{Y}=\left(\begin{array}{ll}
6 & 3 \tag{M1A1}\\
4 & 2
\end{array}\right)\binom{x}{m x+c}=\binom{6 x+3 m x+3 c}{4 x+2 m x+2 c}
$$

$=\binom{3(2 x+m x+c)}{2(2 x+m x+c)}$
A1
therefore the new line has equation $3 Y=2 X \quad$ A1
which is independent of m or $c \quad \boldsymbol{A G}$
Note: The $\boldsymbol{A} \boldsymbol{G}$ line (or equivalent) must be seen for the final $\boldsymbol{A 1}$ line to be awarded.

METHOD 2

take two points on the line, e.g $(0, c)$ and $(1, m+c)$

M1

these map to $\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)\binom{0}{c}=\binom{3 c}{2 c}$
and $\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)\binom{1}{m+c}=\binom{6+3 m+3 c}{4+2 m+2 c}$
therefore a direction vector is $\binom{6+3 m}{4+2 m}=(2+m)\binom{3}{2}$
(since $m \neq-2$) a direction vector is $\binom{3}{2}$
the line passes through $\binom{3 c}{2 c}-c\binom{3}{2}=\binom{0}{0}$ therefore it always has the origin as a jump-on vector A1
the vector equation is therefore $r=\mu\binom{3}{2}$
A1
which is independent of m or $c \quad \boldsymbol{A G}$
Note: The $\boldsymbol{A} \boldsymbol{G}$ line (or equivalent) must be seen for the final $\boldsymbol{A 1}$ line to be awarded.

METHOD 3

$r=\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)\left(\binom{0}{c}+\lambda\binom{1}{m}\right)=\binom{3 c}{2 c}+\lambda\binom{6+3 m}{4+2 m}$
M1A1
$=c\binom{3}{2}+(2+m) \lambda\binom{3}{2} \quad$ A1
$=\mu\binom{3}{2}$
where $\mu=c+(2+m) \lambda$ is an arbitrary parameter.
which is independent of m or c (as μ can take any value)
Note: The $\boldsymbol{A} \boldsymbol{G}$ line (or equivalent) must be seen for the final $\boldsymbol{A} \mathbf{1}$ line to be awarded.

[4 marks]

A geometric transformation $T:\binom{x}{y} \mapsto\binom{x^{\prime}}{y^{\prime}}$ is defined by $T:\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}7 & -10 \\ 2 & -3\end{array}\right)\binom{x}{y}+\binom{-5}{4}$.

3a. Find the coordinates of the image of the point $(6,-2)$.

$$
\begin{aligned}
& \text { MarkScheme } \\
& \left(\begin{array}{cc}
7 & -10 \\
2 & -3
\end{array}\right)\binom{6}{-2}+\binom{-5}{4} \text { (M1) } \\
& =\binom{57}{22} \text { OR }(57,22) \text { A1 }
\end{aligned}
$$

[2 marks]

3b. Given that $T:\binom{p}{q} \mapsto 2\binom{p}{q}$, find the value of p and the value of q.

Markscheme

$\binom{2 p}{2 q}=\left(\begin{array}{cc}7 & -10 \\ 2 & -3\end{array}\right)\binom{p}{q}+\binom{-5}{4}$ (M1)
$7 p-10 q-5=2 p$
$2 p-3 q+4=2 q$ (A1)
solve simultaneously:
$p=13, q=6$ A1
Note: Award $\boldsymbol{A O}$ if 13 and 6 are not labelled or are labelled the other way around.

[3 marks]

3c. A triangle L with vertices lying on the $x y$ plane is transformed by T. [2 marks] Explain why both L and its image will have exactly the same area.

Markscheme

$\operatorname{det}\left(\begin{array}{cc}7 & -10 \\ 2 & -3\end{array}\right)=-1\left(\mathrm{OR}\left|\operatorname{det}\left(\begin{array}{cc}7 & -10 \\ 2 & -3\end{array}\right)\right|=1\right) \boldsymbol{A 1}$
scale factor of image area is therefore $(|-1|=$) 1 (and the translation does not affect the area) $\boldsymbol{A 1}$

[2 marks]

Points in the plane are subjected to a transformation T in which the point (x, y) is transformed to the point $\left(x^{\prime}, y^{\prime}\right)$ where

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

4a. Describe, in words, the effect of the transformation T.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
a stretch of scale factor 3 in the x direction and a stretch of scale factor 2 in the y direction

[1 mark]

4b. Show that the points $\mathrm{A}(1,4), \mathrm{B}(4,8), \mathrm{C}(8,5), \mathrm{D}(5,1)$ form a square.

Markscheme

the four sides are equal in length (5) A1
$\operatorname{Grad} \mathrm{AB}=\frac{4}{3}, \operatorname{Grad} \mathrm{BC}=-\frac{3}{4} \quad \boldsymbol{A 1}$
so product of gradients $=-1$, therefore AB is perpendicular to BC therefore ABCD is a square $\boldsymbol{A G}$

[3 marks]

4c. Determine the area of this square.

Markscheme
 area of square $=25$
 A1

[1 mark]

4d. Find the coordinates of A', B', C', D', the points to which A, B, C, D [2 marks] are transformed under T.

Markscheme

the transformed points are
$\mathrm{A}^{\prime}=(3,8)$
$\mathrm{B}^{\prime}=(12,16)$
$\mathrm{C}^{\prime}=(24,10)$
$\mathrm{D}^{\prime}=(15,2) \quad \boldsymbol{A} 2$
Note: Award A1 if one point is incorrect.

[2 marks]

4e. Show that $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram.
Markscheme
$\operatorname{Grad} \mathrm{A}^{\prime} \mathrm{B}^{\prime}=\frac{8}{9} ; \operatorname{Grad} \mathrm{C}^{\prime} \mathrm{D}^{\prime}=\frac{8}{9} \quad \boldsymbol{A 1}$
therefore $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is parallel to $\mathrm{C}^{\prime} \mathrm{D}^{\prime} \quad \boldsymbol{R 1}$
Grad $\mathrm{A}^{\prime} \mathrm{D}^{\prime}=-\frac{6}{12} ; \operatorname{Grad} \mathrm{B}^{\prime} \mathrm{C}^{\prime}=-\frac{6}{12} \quad \boldsymbol{A 1}$
therefore $\mathrm{A}^{\prime} \mathrm{D}^{\prime}$ is parallel to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$
therefore $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is a parallelogram $\boldsymbol{A G}$
[3 marks]

4f. Determine the area of this parallelogram.

Markscheme

area of parallelogram $=\mid$ determinant $\mid \times$ area of square
$=6 \times 25$
(M1)
$=150$
A1
[2 marks]

Printed for DSB INTL SCH

